Climate drivers and climate changes in the Columbia River basin

Philip Mote
Climate Impacts Group
University of Washington

The Climate Impacts Group

http://cses.washington.edu/cig/

Goal: help the Pacific Northwest become more resilient to climate variations and climate change

Supported by NOAA Climate Program Office as part of the Regional Integrated Science and Assessments (RISA) program

Outline

- Interpreting regional climate variability and change
- Observed changes here
- Future climate

cses.washington.edu/cig/

Global warming

Widespread warming has occurred. Globally averaged, the planet is about 0.75°C warmer than it was in 1860, based upon dozens of high-quality long records using thermometers worldwide, including land and ocean.

Unequivocal evidence of warming

National Climatic Data Center

Global Annual Average Temperatures

Courtesy Susan Solomon, NOAA

Compared to the USA average....

A hot summer does not prove global warming. A cool spring does not prove global cooling.

Pacific Decadal Oscillation

El Niño/Southern Oscillation

monthly values for the PDO index: 1900-January 2008

PDO surface air temperature anomalies (C) 1950-96

Todd Mitchell, UW/JISAO

Tree-ring based PDO index reconstructions: (ex: Gedalof and Smith 2001)

Plots courtesy of Torrence and Compo http://paos.colorado.edu/research/wavelets

Understanding global warming

IPCC Summary for Policymakers 2007

Understanding global warming

IPCC Summary for Policymakers 2007

Understanding global warming

Regional attribution

Outline

- Interpreting regional climate variability and change
- Observed changes here
- Future climate

cses.washington.edu/cig/

Trends in snowfall equivalent

Knowles et al. 2006

As the West warms, winter flows rise and summer flows drop

Stewart et al. J. Climate 2005

Attribution

"up to 60% of the climate related trends of river flow, winter air temperature and snow pack [in the Western US] between 1950-1999 are human-induced." - Barnett et al. 2008

Outline

- Interpreting regional climate variability and change
- Observed changes here
- Future climate

cses.washington.edu/cig/

Estimating future climate

• How much GHGs will there be?

Estimating future climate

• How much GHGs will there be?

Estimating future climate

- How much GHGs will there be?
- How responsive is the climate?

Temperature change 2080-99 minus 1980-99

Averaged over 21 global models; IPCC Fig 11.12

Precipitation change 2080-99 minus 1980-99

Averaged over 21 global models; IPCC Fig 11.12

Downscaling

Global Climate Model Air Temperature

Texture of warming: Regional model minus global model for 2050s

Difference in projected winter temperature (°C)

Conclusions

- human influence on climate emerging from noise at smaller scales (western N.Am.)
- Observed PNW changes: 1.5°F warming, corresponding hydrologic shifts
- Future climate: 0.5°F/decade warmer, precip?, rest depends on us